NumPy 数组过滤

告知:目的是学习,不以利益,内容都来自大数据,仅供学习以参考!

数组过滤
从现有数组中取出一些元素并从中创建新数组称为过滤(filtering)。

在 NumPy 中,我们使用布尔索引列表来过滤数组。

布尔索引列表是与数组中的索引相对应的布尔值列表。

如果索引处的值为 True,则该元素包含在过滤后的数组中;如果索引处的值为 False,则该元素将从过滤后的数组中排除。

实例
用索引 0 和 2、4 上的元素创建一个数组:

import numpy as np

arr = np.array([61, 62, 63, 64, 65])

x = [True, False, True, False, True]

newarr = arr[x]

print(newarr)

上例将返回 [61, 63, 65],为什么?

因为新过滤器仅包含过滤器数组有值 True 的值,所以在这种情况下,索引为 0 和 2、4。

创建过滤器数组
在上例中,我们对 True 和 False 值进行了硬编码,但通常的用途是根据条件创建过滤器数组。

实例
创建一个仅返回大于 62 的值的过滤器数组:

import numpy as np

arr = np.array([61, 62, 63, 64, 65])

# 创建一个空列表
filter_arr = []

# 遍历 arr 中的每个元素
for element in arr:
  # 如果元素大于 62,则将值设置为 True,否则为 False:
  if element > 62:
    filter_arr.append(True)
  else:
    filter_arr.append(False)

newarr = arr[filter_arr]

print(filter_arr)
print(newarr)

实例
创建一个过滤器数组,该数组仅返回原始数组中的偶数元素:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

# 创建一个空列表
filter_arr = []

# 遍历 arr 中的每个元素
for element in arr:
  # 如果元素可以被 2 整除,则将值设置为 True,否则设置为 False
  if element % 2 == 0:
    filter_arr.append(True)
  else:
    filter_arr.append(False)

newarr = arr[filter_arr]

print(filter_arr)
print(newarr)

直接从数组创建过滤器
上例是 NumPy 中非常常见的任务,NumPy 提供了解决该问题的好方法。

我们可以在条件中直接替换数组而不是 iterable 变量,它会如我们期望地那样工作。

实例
创建一个仅返回大于 62 的值的过滤器数组:

import numpy as np

arr = np.array([61, 62, 63, 64, 65])

filter_arr = arr > 62

newarr = arr[filter_arr]

print(filter_arr)
print(newarr)

实例
创建一个过滤器数组,该数组仅返回原始数组中的偶数元素:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

filter_arr = arr % 2 == 0

newarr = arr[filter_arr]

print(filter_arr)
print(newarr)
© 版权声明
THE END
喜欢就支持以下吧
点赞0赞赏
分享
评论 抢沙发