NumPy 数组迭代

告知:目的是学习,不以利益,内容都来自大数据,仅供学习以参考!

数组迭代
迭代意味着逐一遍历元素。

当我们在 numpy 中处理多维数组时,可以使用 python 的基本 for 循环来完成此操作。

如果我们对 1-D 数组进行迭代,它将逐一遍历每个元素。

实例
迭代以下一维数组的元素:

import numpy as np

arr = np.array([1, 2, 3])

for x in arr:
  print(x)

迭代 2-D 数组
在 2-D 数组中,它将遍历所有行。

实例
迭代以下二维数组的元素:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

for x in arr:
  print(x)

如果我们迭代一个 n-D 数组,它将逐一遍历第 n-1 维。

如需返回实际值、标量,我们必须迭代每个维中的数组。

实例
迭代 2-D 数组的每个标量元素:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

for x in arr:
  for y in x:
    print(y)

迭代 3-D 数组
在 3-D 数组中,它将遍历所有 2-D 数组。

实例
迭代以下 3-D 数组的元素:

import numpy as np

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

for x in arr:
  print(x)

要返回实际值、标量,我们必须迭代每个维中的数组。

实例
迭代到标量:

import numpy as np

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

for x in arr:
  for y in x:
    for z in y:
      print(z)

使用 nditer() 迭代数组
函数 nditer() 是一个辅助函数,从非常基本的迭代到非常高级的迭代都可以使用。它解决了我们在迭代中面临的一些基本问题,让我们通过例子进行介绍。

迭代每个标量元素
在基本的 for 循环中,迭代遍历数组的每个标量,我们需要使用 n 个 for 循环,对于具有高维数的数组可能很难编写。

实例
遍历以下 3-D 数组:

import numpy as np

arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

for x in np.nditer(arr):
  print(x)

迭代不同数据类型的数组
我们可以使用 op_dtypes 参数,并传递期望的数据类型,以在迭代时更改元素的数据类型。

NumPy 不会就地更改元素的数据类型(元素位于数组中),因此它需要一些其他空间来执行此操作,该额外空间称为 buffer,为了在 nditer() 中启用它,我们传参 flags=[‘buffered’]。

实例
以字符串形式遍历数组:

import numpy as np

arr = np.array([1, 2, 3])

for x in np.nditer(arr, flags=['buffered'], op_dtypes=['S']):
  print(x)

以不同的步长迭代
我们可以使用过滤,然后进行迭代。

实例
每遍历 2D 数组的一个标量元素,跳过 1 个元素:

import numpy as np

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

for x in np.nditer(arr[:, ::2]):
  print(x)
© 版权声明
THE END
喜欢就支持以下吧
点赞0赞赏
分享
评论 抢沙发